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Abstract. The Debye–Waller factors exp[−W ] for displacive-type incommensurate (IC)
structures are calculated taking into account the correlation of the phases of the modulation.
It is shown thatW ∼ T

1/2
i |T − Ti |−1/2 and that IC satellites should not be observed in the

immediate vicinities of transitions.

1. Introduction

The Debye–Waller factors for IC structures have been calculated by Overhauser [1] who
showed that they should be very small near the IC transitions and that consequently the
IC satellite reflections should not be observable there. However, Axe [2] showed that the
values of the Debye–Waller factors should be close to unity even in the immediate vicinities
of IC transitions. Later the Debye–Waller factors for the IC structures were also calculated
by Krivoglaz [3], who obtained the same result as Overhauser. The discrepancy between
the results of Overhauser and Axe arises from the introduction of different variables in
these papers for the description of the fluctuations of the phase in the IC structure; this is
elucidated in appendix A.

In the present paper we calculate the Debye–Waller factors by taking into account the
spatial correlation of the phases of the IC modulation; the necessity for its consideration
arises from the discrete character of the crystal structure. Our result differs from those
of Overhauser [1], Axe [2] and Krivoglaz [3]. We show that the Debye–Waller factors
may be very small for displacive-type IC structures within some temperature range near
the transitions (but not as small as was predicted by Overhauser [1]) and hence that,
instead of Bragg reflections, a diffuse scattering should be observed. Our result disagrees
with the Debye–Waller factor calculation results given by Axe [2] (see appendix 1).
The smallness of the Debye–Waller factors for IC structures is a consequence of the
anomalous increase (divergence) of the phase fluctuation〈ϕ2(R)〉 on approaching the
transition, and the result given by Axe [2] is, in principle, applicable only very far from the
transitions.

First, it should be stressed that the result obtained by Overhauser [1] is not as radical as
it was interpreted as being. According to our estimates given here, for order–disorder
IC phases (which have, generally, small Curie constants and, consequently, large IC
amplitudes), satellites are normally not observable in temperature regions of∼10−1 K
around second-order transitions forTi ∼ 102 K.

† Permanent address: Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak-2,
378410 Armenia.
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We note the following.

(i) Most of the observed IC structures are of order–disorder type.
(ii) Temperature regions as small as 10−1 K around transitions are not generally

accessible, because of the first-order character of real transitions.
(iii) Some of the transitions are observed at low temperatures.
(iv) Even in the case of displacive-type IC transitions, the Curie constant can sometimes

be small (such a situation is discussed in section 4 for the IC phase of K2SeO4).

For displacive-type IC transitions, the result given by Overhauser indicates that IC satellites
are not observable even for temperature regions as large as∼102 K around transitions for
Ti ∼ 102 K, while our result indicates that IC satellites are not observable in this case only
in much smaller temperature regions of∼1 K around the transitions forTi ∼ 102 K. We
also note that the estimates of the Debye–Waller factors are very sensitive to the specific
values of the temperature, IC amplitude and other parameters, because of their exponential
character and, in principle, the possibility of observation of satellites for displacive-type
transitions in temperature regions of about 1 K around the transitions forTi ∼ 102 K should
not be discounted.

In section 4 of this paper, experimental observations for quartz and for crystals ofα-
CuNSal (α-bis(N-methylsalicylideneiminato)copper(II)) are briefly discussed, as examples
that provide confirmation of the theory presented.

2. Calculation of the phase fluctuations

The thermodynamic potential expansion for a crystal in the IC phase as a function of the
order parameter and its spatial derivatives can be written as

8 =
∫

dR

{
α

2
η2+ g

2
(∇η)2+ g1

2
(∇2η)2+ b

4
η4

}
(1)

where the coefficientsg < 0 andg1 > 0 determine the value of the IC wavevectork. The
IC structure which appears below the transition point may be described by the following
modulation function:

η(R) =
√

2η0 cos(k ·R+ ϕ). (2)

Substituting equation (2) into equation (1) and minimizing with respect tok and η0, we
obtain an explicit expression for the thermodynamic potential for near equilibrium in terms
of the IC modulation amplitudeη0 and the phaseϕ:

8 =
∫

dR

{
α̃

2
δη2

0 +
g̃

2
(∇δη0)

2+ D
2
η2

0(∇ϕ)2
}

(3)

where α̃ = −2(α + gk2 + g1k
4) > 0, D = g + 6g1k

2 > 0, g̃ = g + 4g1k
2 > 0 and

the IC vectork2 = −g/2g1. δη0 is the deviation of the IC modulation amplitude from
its equilibrium valueη0. In deriving equation (3), the term linear in∇ϕ was omitted,
since, from the condition∂8/∂k = 0, i.e., 2g1k

3 + gk = 0, it follows that the coefficient
of the term∇ϕ is equal to zero. In equation (3) the strongly space-oscillating quantities
proportional to cos(2k ·R+2ϕ) have been omitted, suggesting that the remaining quantities
in equation (3) vary more smoothly in space. This expression has a diagonalized form with
respect to the phase and amplitude modes, and coincides with that derived by Golovko and
Levanyuk [5].

When performing calculations of the statistical averages ofϕ(R), ϕ2(R), . . . using the
potential (3), one should remember that the gradient∇kϕ(R) in the direction of the IC
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wavevectork cannot be larger than the reciprocal-lattice vectorbk in the same direction;
otherwise the phase difference between two neighbouring lattice sites in the direction ofk
would be more thanπ , and states with this feature do not exist. (Such states correspond
to the oscillations of the IC modulation function (2) between two neighbouring lattice sites
in the direction ofk. A more detailed discussion of such a situation is given in appendix
B.) To incorporate this condition in the calculations, one can use a procedure similar to that
followed in the calculations of the Debye correlation energy in plasma [4] (the random-
phase approximation). To take into account the condition|∇kϕ| 6 |bk| in the calculation
of the continuous statistical integral of exp[−8/Ti ] (where8 is given by equation (3)
andTi is the temperature under consideration) over dϕ(R1) dϕ(R2) · · ·dϕ(RN), one should
in each integration over dϕ(Ri) multiply the expression under the integral by the factor
exp[−(∇kϕ(Ri))2/(2b2

k)]. This factor is close to zero when(∇kϕ(Ri))2 > b2
k and is close

to unity when(∇kϕ(Ri))2 < b2
k .

So, it can be seen that the above-described procedure (after multiplication by the
exponents

∏
i exp[−(∇kϕ(Ri))2/(2b2

k)] under the statistical integral) leads to the addition
of the termTi(∇kϕ(R))2/(2b2

k) to the expression under the integral in (3). This term
corresponds to the phase correlation energy and, as we shall see below, its role is significant
in the calculations of the phase fluctuations. Transferringϕ(R) to the Fourier components,
one obtains from equation (3) the thermodynamic potential related to the phase fluctuations
for the case in which the IC vectork coincides with thex-axis:

18 = 1

2
V
∑(

Dη2
0q

2+ Ti

b2
k

q2
x

)
|ϕq |2.

Then the phase fluctuations are given by

〈|ϕq |2〉 = Tib
2
k

V (Db2
kη

2
0q

2+ Tiq2
x )

〈ϕ2(R)〉 = V

(2π)3

∫
dq 〈|ϕq |2〉 ∼ T

1/2
i bkq0

D1/2η0

(4)

whereq0 is a certain cut-off parameter of the same order as the reciprocal-lattice vectorb
and the integration has been carried out for the case whereDb2

kη
2
0 � Ti . This condition

holds, as we shall see below, for displacive-type transitions with temperaturesTi ∼ 102 K in
temperature regions of less than or of the order of 1 K around the transitions, and for order–
disorder transitions in narrower temperature regions around the transitions. The temperature
dependence of〈ϕ2(R)〉 can be obtained from equation (4), taking into account the fact that
η2

0 ∼ |T − Ti |, and it has the form〈ϕ2(R)〉 ∼ T 1/2
i |T − Ti |−1/2.

As can be seen from equations (4), the phase fluctuations〈|ϕq |2〉 are significantly
anisotropic. Since in temperature regions of 1 K around the transitions,η2

0 takes the value
10−4η2

at (ηat is the amplitude of the IC modulation with displacements of an atomic order of
magnitude) for displacive-type transitions and at transition temperaturesTi ∼ 102 K (which
is equal to 10−2Tat ; Tat is of the atomic order of magnitude,∼104 K), the phase fluctuations
in equation (4) for the vectorsq ‖ k andq ⊥ k should differ by two orders of magnitude.

3. Calculation of the Debye–Waller factors

Since the IC modulation function in equation (2) is itself a component of the crystal’s
electron-density function, one can consider the diffraction (e.g., of x-rays) directly using this
function. The scattering amplitude corresponding to the IC Bragg reflection is proportional
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to the statistical average of the Fourier component of the modulation function, equation (2):〈∫
dR η0e±i(k·R+ϕ)e−iQ·R

〉
= V η0e−〈ϕ

2(R)〉/2 (5)

where the square of the last exponent is the so-called Debye–Waller factor [6], giving the
attenuation of the Bragg reflection. (We should point out that the result of averaging in
equation (5) is valid not only in the case of the Gaussian phase approximation [2], but also
more generally [6].) The square of the function given as equation (5) gives the reflection
intensity for the scattering vectorQ = ±k, which is attenuated due to the phase fluctuations.
In equation (5) the fluctuations of the amplitude modeδη0 are not taken into account, since
their contribution to the Debye–Waller factors has the same form for any structural phase
transition (not just IC ones) and is generally small.

For the calculation of the intensity of the satellite reflections near the main Bragg
reflections (i.e., for large scattering vectorsG + k), one should introduce explicitly the
electron-density waves

f iG exp[iG · (R+ u(R)+ ri + u(i)(R))]
for each sublatticei of the crystal [3], where: the vectorR gives the position of the lattice
unit cells in the undistorted crystal;u(R) gives the displacements of the unit cells induced
by the IC modulation (the acoustic displacements); the vectorri gives the position of the
ith atom in the undistorted unit cell;u(i)(R) gives the displacement of theith atom from
the siteri induced by the IC modulation, which belongs to the group of displacements of
the optical mode ofη-symmetry;f iG is the atomic structure factor;G is a reciprocal-lattice
vector. (We have mainly followed the method of calculation of the scattering amplitude for
displacive-type lattice distortions given in reference [3].)

The components of the optical IC wave of displacementsu(i)(R) are proportional to the
IC modulation functionη(R) and the amplitudeu(i)0 of such optical modulation is always
a linear function ofη0 (it is proportional toη0). The optical IC wave of displacements
generally induces an acoustic wave of IC displacements with the same period, due to some
linear gradient acoustic–optical coupling in the thermodynamic potential. The components
of such an acoustic IC wave of displacementsu(R) (e.g.,ux anduy) are modulated like the
sine or like the cosine of(k ·R+ϕ) and the amplitude of the modulationu0 is proportional
to η0. In what follows, we assume for simplicity thatu(R) = u0 cos(k · R + ϕ), since
whether the different components ofu(R) are modulated like a sine or like a cosine is not
essential in our consideration.

The electron-density wave can be introduced in the following form [3]:

f iGeiG·(R+ri+u(R)) = f iGeiG·(R+ri )
∞∑

n=−∞
Jn(G · u0)e

in(k·R+ϕ+π/2).

(So as to keep our expressions simple, we have taken into account explicitly just the acoustic
wave of displacementsu(R), but the same consideration can be adopted for the optical wave
of displacementsu(i)(R).) Taking into account the fact thatG · u0 � 1 (since near the
transitions the IC modulation amplitude is generally much smaller than the lattice parameter),
one can retain in the above expression just the Bessel functionsJ0 and J±1, and expand
them into a series inG · u0 to obtain

f iGeiG·(R+ri+u(R)) = f iGeiG·(R+ri )
[

1+ i
(G · u0)

2
e±i(k·R+ϕ)

]
.

This expression gives the electron-density function in theith sublattice distorted by the IC
modulation in the first-order expansion with respect to the IC acoustic wave of displacements
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u(R). (The same expansion can be used for the case of the optical wave of displacements
u(i)(R).)

To calculate the scattering amplitude, one takes the Fourier componentQ of this
expansion and carries out statistical averaging. It is easy to show that the averaged scattering
amplitude is non-zero only forQ = G (the main Bragg reflection) andQ = G ± k (IC
satellite reflections). As a result of the statistical averaging, and taking into account the
scattering from all sublattices, the IC satellite’s scattering amplitude takes the form

V

{∑
i

f iGeiG·ri
}
(G · u0)e

−〈ϕ2(R)〉/2

which is completely identical to equation (5), since the displacement amplitudeu0 ∝ η0.
So, the calculation of the Debye–Waller factors always reduces to the averaging of the

same exponent:〈exp[iϕ(R)]〉 = exp[−〈ϕ2(R)〉/2]. In fact, the intensity given by the square
of equation (5) coincides with the expression for the first-order satellite reflections induced
by the IC waves of displacements given in references [1, 3]. However, the calculation of
the average of〈ϕ2(R)〉 in the present paper is different from those in references [1, 3].

An alternative way to calculate the scattering amplitude for the IC satellite reflections
is as follows [3]. One introduces the electron-density wave for the lattice unit cells,
FG exp[iG · (R + u(R))], where the vectorR gives the position of the unit cell in the
undistorted crystal,u(R) is the acoustic displacement vector andFG is the structure factor
of the unit cell, which depends on the optical atomic displacements and, in the case of a
small displacement, can always be introduced as the expansionFG = F 0

G + γGη (F 0
G is the

structure factor of the undistorted unit cell andγG is a coefficient of the expansion). In
other words, the optical atomic displacements enter the expression forFG only through the
symmetry parameterη [3]. Since the IC modulation functionη(R) is given by equation (2),
the corresponding electron-density wave takes the form

F 0
GeiG·(R+u(R)) + γGη0ei[(G±k)·R±ϕ]

(where the acoustic displacementsu(R) are proportional toη(R)), and the expression for
the scattering amplitude and the Debye–Waller factor reduces to the form of equation (5).

Since we have calculated above, equation (4), the mean square ofϕ(R), we can estimate
the magnitude of the Debye–Waller factors. For example, at temperaturesTi ∼ 102 K, for
the square of the IC modulation amplitudeη2

0 taking the value 10−4η2
at in temperature regions

of 1 K around the transitions in the case of displacive-type transitions, forbk ∼ q0 and for
the coefficientD being of the atomic order of magnitude, one obtains an estimate of∼10
for the dimensionless quantity〈ϕ2(R)〉 in the exponent of the Debye–Waller factor. We
should note that this quantity can indicate attenuation of the satellite reflection by factors
varying from 10 to much more than 1010 and observation of satellite reflections in such
temperature regions around displacive-type IC transitions may thus be almost impossible.
(To be more specific, such attenuation, being exponential, is very sensitive to the specific
values of the parameters entering the exponent, e.g., the transition temperature and the IC
amplitude, and therefore the situation in which the attenuation is by a factor of less than
10 is also possible.) For the order–disorder transitions, the amplitudeη2

0 is generally larger
than that for the displacive-type transitions and can be estimated as 10−2η2

at , and hence
observation of the satellite reflections is possible even in the closer vicinity of the transition
temperature (∼10−1 K and even less, depending on the specific values of the parameters
for each case).

The results for the Debye–Waller factors derived in the work of Overhauser and
Krivoglaz [1, 3] can be reproduced from equation (4) if one neglects the phase correlation
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in it (omitting the term inq2
x ). In such a case the value of〈ϕ2(R)〉 given by the integral

in equation (4) will be〈ϕ2(R)〉 ∼ Ti/η
2
0 (in our notation). At temperaturesTi ∼ 102 K,

the mean square value of〈ϕ2(R)〉 will be of the order of 102 (for displacive-type structures
in temperature regions of∼1 K around the transitions), which is much larger than that
obtained above which takes into account the phase correlation, and thus the observation of
IC satellites would be impossible in most cases. For the order–disorder transitions, using
the estimateη2

0 ∼ 10−2η2
at , one obtains for the case considered by Overhauser that〈ϕ2(R)〉

is of the order of∼1 (and the satellites are observable) in temperature regions of about 1 K
around the transitions forTi ∼ 102 K.

We shall now show that the Debye–Waller factor may remain small even in the case of
a lock-in transition to some commensurate phase if the modulation amplitude is sufficiently
small. Let us consider a lock-in transition to a phase with the structure vectorb/3. In such
a case, a term∼η3

0 cos3(k ·R+ ϕ) should be incorporated in the thermodynamic potential
(1). This gives a contribution to the potential (equation (3)) of the formrη3

0 cos(3ϕ) (r
is some coefficient). Such a contribution minimizes the potential (3) in the case where
ϕ = 2π/3 for r < 0 and in the case whereϕ = 2π/6 for r > 0. Expanding cos(3ϕ) near
its equilibrium value in terms of1ϕ = ϕ − 2π/3 (or 2π/6), one will obtain a contribution
to the potential (3) of the form(r/2)η3

01ϕ
2(R). Then, for the value of〈ϕ2(R)〉, one will

obtain, instead of equation (4),

〈ϕ2(R)〉 = V

(2π)3

∫
dq

Tib
2
k

b2
krη

3
0 + b2

kDη
2
0q

2+ Tiq2
x

∼ T
1/2
i bk

Dη0

(√
Dq2

0 −
√
rb2
kη0
)
. (6)

Due to the presence of
√
η0 in the last term of equation (6),〈ϕ2(R)〉 rapidly decreases

on cooling, but, as is easy to see, for small values ofη0 it may be large enough to make
the satellite reflections invisible. (Generally, the third-order term in the Landau potential
expansion induces a strong first-order phase transition withη2

0 ∼ r, but nevertheless
the above-described situation can be realized in the case of a sufficiently small coeff-
icient r.)

To derive equation (6), we have used an expansion of cos 3ϕ near its equilibrium value,
assuming that1ϕ � 1. But now one can see that, in the immediate vicinities of transitions,
the value of equation (6) is greater than unity. Nevertheless, our estimates of the Debye–
Waller factor following from equation (6) remain correct, since when the condition1ϕ � 1
does not hold, the fluctuations〈ϕ2(R)〉 are even larger than those given by equation (6). The
latter can be checked by using the function cos 3ϕ directly (instead of its expansion) to obtain
the estimates. The thermodynamic potential (1), containing the termrη3

0 cos 3ϕ (instead of
rη3

01ϕ
2), now increases less for large fluctuations ofϕ, since|rη3

0 cos 3ϕ| < |rη3
01ϕ

2| at
large values of1ϕ. Hence, the fluctuations given by equation (6) are smaller than they
should be in this case.

For the higher-order lock-in terms (higher than third order), the corresponding contrib-
ution to the Debye–Waller factors should be much smaller, and their behaviour should be
more similar to that of the Debye–Waller factors of the IC phases described by equations
(4) and (5).

In high-temperature structure studies of the solid solutions CaF2–LnF3 [7] (where Ln
is a lanthanide element), undergoing phase transitions involving multiplication of the size
of the lattice cell by factors of 7 or 13, instead of satellite reflections a diffuse scattering
of x-rays (below the transition) was observed for some elements of the Ln group. The
transitions to the 7-fold- and 13-fold-increased lattice cells have been well studied [8] and
they originate from the third- and fourth-order lock-in terms in the thermodynamic potential
expansion. So, we can see that, even in the case of order–disorder-type transitions, in
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view of the lock-in terms in the potential expansion, the above-described effect can be very
significant at high temperatures.

4. Discussion

We briefly discuss the spatial distribution of the scattering of x-rays (or neutrons) by phase
fluctuations, following from the above development, and the experimental observations for
crystals of K2SeO4, α-CuNSal and quartz.

The intensity of the diffuse scattering of x-rays or neutrons by phase fluctuations [3] in
some directionq is proportional toη2

0〈|ϕq |2〉. For vectorsq of small magnitude, the intensity
η2

0〈|ϕq |2〉 contributes to the central peak, since the phase fluctuations for small values of
q are overdamped [5]. In the case considered by Overhauser [1], the phase fluctuations
are 〈|ϕq |2〉 ∼ Ti/(Dη

2
0q

2) and the scattered intensity is proportional toTi/(Dq2). If the
coefficientD is not small (i.e., is of the atomic order of magnitude), this intensity is of
the same order of magnitude as the diffuse intensity induced by acoustic vibrations near
any main Bragg reflection:I ∼ Ti/(cq

2), wherec is of the order of magnitude of the
crystal’s elastic constants [6]. (The latter contribute to the conventional Debye–Waller
factors attenuating the main Bragg reflections.)

As follows from our consideration (see equation (4)), the fluctuations of the phase are
significantly anisotropic. For the direction of the IC vector (qx in equation (4)) the phase
fluctuations are given by〈|ϕq‖ |2〉 ∼ 1/q2

‖ and for the direction perpendicular to the IC
vector〈|ϕq⊥|2〉 ∼ Ti/(Dη2

0q
2
⊥). So, for the direction of the IC vector, the scattered intensity

is proportional to∼η2
0/q

2
‖ and it increases with temperature decrease asη2

0 ∼ |T − Ti |.
In the direction perpendicular to the IC wavevector, the corresponding intensity takes the
form ∼Ti/(Dq2

⊥) and is expected to be much stronger. For that direction it should have the
same order of magnitude as the diffuse scattering near the main Bragg reflections (if the
coefficientD is not small).

The IC phase in K2SeO4 (Ti = 130 K) is interpreted as being of displacement type,
although it is the exception [15] in the family of 11 order–disorder IC structures (such as
that of Rb2ZnCl4). In this crystal, no significant attenuation of the satellites or anomalous
diffuse scattering is observed. The temperature of this transition is rather low (130 K)
and, in principle, the satellites may not be strongly attenuated. Also, the Curie constant
α−1

0 (η2
0 is proportional toα0(Ti − T )) can be relatively small for some displacive-type

transitions. In particular, it should manifest itself as a relatively strong fluctuation anomaly
over a wide temperature range aboveTi , since the first fluctuation correction to the heat
capacity is proportional toT 2

i α
3/2
0 |T − Ti |−1/2. It is interesting to note that the anomaly in

the heat capacity of K2SeO4 is very strong, like that for a displacive-type transition. It is
of the same order of magnitude as the anomaly for typical order–disorder IC transitions in
Rb2ZnBr4 and Rb2ZnCl4 over a wide temperature range of about 10 K above the transition
temperature (see figure 1 in the paper by Ishibashi [15]). So, we consider that the satellites
in K2SeO4 are observed due to the relatively low transition temperature, large IC amplitude
(i.e., largeα0) and, consequently, large Debye–Waller factor.

Finally, we briefly comment on two experimental observations, for crystals ofα-CuNSal
and quartz, relevant to the present theory. The strong diffuse scattering of x-rays observed
in the IC phase ofα-CuNSal was identified [9] as a scattering by phase fluctuations. The
intensity of the diffuse scattering by phase fluctuations appeared to be stronger than the
scattering near the main Bragg reflections. The IC transition temperature for this crystal is
assigned as 305 K. However, we note that a finite value of the IC amplitude is observed
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Figure 1. (a) The IC modulation amplitude forα-CuNSal measured by Adlhartet al [9] by
means of x-ray diffraction. Note that the IC transition temperature is identified asTi = 305 K,
although a finite value of the amplitude is observed even at 310 K. (b) The intensity of the
quasielastic diffuse scattering of neutrons measured by Dolinoet al [10] near the (1 1 0) Bragg
reflection in quartz. Different peaks correspond to temperatures above and belowTi = 850 K.
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even at 310 K, as follows from diffraction measurements [9] (see figure 1(a)). As can be
seen from figure 3 of [9], the intensity of the diffuse scattering atT = 323 K is comparable
with the satellite intensity at 303 K. We consider that the IC modulation in this crystal
exists at temperatures significantly higher than the value identified,Ti = 305 K, but that it
is strongly attenuated by the Debye–Waller factor.

In figure 1(b) the neutron scattering peaks observed by Dolinoet al [10] near theα ↔ β

transition of quartz are depicted. These peaks correspond to the IC vectork ≈ 0.035b.
Comparing the intensities of the peaks in figure 1(b), e.g., atTi + 0.4 K (the diffuse
scattering) and atTi −0.3 K (the satellite intensity), one can see that they differ by a factor
of only 5.5. (Even forTi + 4 K andTi − 0.9 K, the intensities differ by only a factor of
about 40.) However, the intensity of the diffuse scattering is proportional to the scattering
volumeV , while the intensity of the satellite reflection is proportional toV 2, and the latter
should be much stronger [6]. The IC transition temperature was determined in reference
[10] as the point at which the sharp increase of the intensity depicted in the inset of figure
1(b) occurs, and it has the value 850 K. We consider that all of the peaks observed in
figure 1(b) correspond to IC satellite reflections strongly attenuated by the Debye–Waller
factor and that the IC phase in quartz exists at temperatures higher thanTi = 850 K. In
other words, since the IC amplitude (the order parameter of the transition) is proportional
to η0 ∼ I 1/2, figure 1(b) should be considered as evidence that the value ofη0 is finite (not
as small as a fluctuation) at temperatures higher than 850 K also. (Comparingη0 ∼ I 1/2

in figure 1(b) at the temperaturesTi + 4 K andTi − 0.9 K, one can see that they differ by
factors of only 6–7.)

Existence of the IC phase in quartz at temperatures higher thanTi = 850 K is also
consistent with the observation in the same temperature range of the central peak [11] and
the mode at 355 cm−1 in the Raman scattering [12], which are symmetry forbidden for the
β-phase.

Appendix A

We reproduce here the procedure for the introduction of variables for the description of
fluctuations in the IC phase used by Axe [2] and demonstrate the origin of the discrepancy
between the Debye–Waller factors calculated by Axe and those obtained in the present paper
(or by Overhauser [1]). The calculations carried out by Axe are based on the description of
the phason and amplitude modes given by Bruce and Cowley [13, 14], which is applicable,
as we shall see below, only in the case of very small fluctuations of the phase.

The IC displacement waveul introduced on page 4185 of the paper by Axe [2] can be
presented as follows:

u(R) = Qq0eiq0·R + CC= η1 cosq0 ·R+ η2 sinq0 ·R. (A1)

The variablesη1 and η2 are introduced in the above equation as the real and imaginary
components of the complex amplitudeQq0.

So, equation (17) in the paper by Axe for the energy of the IC displacement wave in
our notation takes the form

F = α̃

2
(η2

1 + η2
2)+

b1

4
(η2

1 + η2
2)

2 (A2)

where the equilibrium value ofη2
1 + η2

2 = −α̃/b1.
The equations of motion for the simplest case of spatially homogeneous fluctuationsδη1

andδη2 near their equilibrium valuesη1 andη2 can be obtained from the quadratic form of
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the variation of the energy:

δF = b1(η1 δη1+ η2 δη2)
2. (A3)

This expression can be considered as the potential energy for the spatially homogeneous
fluctuations of the phase and amplitude of the IC modulation function (A1) around the
equilibrium values of the IC amplitudeη2

0 = η2
1 + η2

2 = −α̃/b1 and a certain phase of the
IC wave given byϕ0 = arctan(η1/η2).

So, expression (A3) can be used to obtain the equations of motion for the variablesδη1

andδη2, as was done by Axe [2] and Bruce and Cowley [13, 14].
For the diagonalization of the equations of motion based on the potential (A3), it is

sufficient to diagonalize the quadratic form (A3) and to obtain its eigenvectors as linear
combinations ofδη1 andδη2. As is easy to check, the linear combinations which diagonalize
the quadratic form (A3) are

ξ‖ = η1 δη1+ η2 δη2√
η2

1 + η2
2

and ξ⊥ = −η2 δη1− η1 δη2√
η2

1 + η2
2

. (A4)

In the case of spatially homogeneous fluctuations ofξ‖ and ξ⊥, their frequencies are
respectivelyω2 = −2α̃/m and ω2 = 0, which correspond to the amplitude and phason
modes. (In the notation of Bruce and Cowley [13, 14],ξ‖ = P1 andξ⊥ = P2.)

However, using the notationη1 = η0 cosϕ andη2 = η0 sinϕ, one can see that for the
simplest case,δη0 = 0 (i.e., considering only fluctuations of the phase at the fixed amplitude
η0), expressions (A4) take the form

ξ‖ = η0[cos(ϕ − ϕ0)− 1] ξ⊥ = η0 sin(ϕ − ϕ0). (A5)

Representing cos(ϕ − ϕ0) as 1− (ϕ − ϕ0)
2/2+ · · ·, one can see that the modeξ‖ is indep-

endent of the fluctuations of the phase only to lowest order of the expansion in terms of
ϕ − ϕ0; i.e., on taking the expansion to higher order, the energy becomes dependent on the
absolute value of the phaseϕ. This means that the variablesδη1 andδη2 used by Axe [2] and
by Bruce and Cowley [13, 14] are formally acceptable for the description of the fluctuations
of the IC modulation only in case of small fluctuations of the phase,〈(ϕ − ϕ0)

2〉 � 1.
We note that the energy of the IC modulation should always be independent of the

absolute value of the phase, and this is the case not only in the harmonic approximation.
The variablesξ‖ andξ⊥ are non-linear functions ofϕ (they are linear functions of cos(ϕ−ϕ0)

and sin(ϕ − ϕ0)), and hence the harmonic approximation in terms of the variablesξ‖ and
ξ⊥ is automatically anharmonic as a function ofϕ. In other words, the expression for the
energy (A3) is diagonalized not with respect to the phase and the amplitude, but with respect
to some non-linear functions of the phase and amplitude.

So, the introduction of the variablesδη1 and δη2 as the normal coordinates for the
fluctuations of the IC modulation is incorrect from the outset, since it does not give a
gapless dispersion law for the phason mode and does not allow one to apply successive
perturbation theory for the anharmonic corrections (since the energy depends on the absolute
value of the phase in each order of expansion in terms ofξ‖).

Introducing new notation based onη0 cos(k ·R + ϕ) = η0 cosk · (R + T ), where
ϕ = k·T and the vectorT gives the displacement of the IC wave as a whole, one can see that
the form of the energy expression (3) appears to be equivalent to that in classical elasticity
theory (it depends only on the spatial derivatives of the displacement vectorT ). In other
words, the introduction of the phase into the energy expression is similar to the introduction
of the acoustic displacements in the elastic energy. This being so, the approach used by
Bruce and Cowley [14] appears to be an alternative to that followed in classical elasticity
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theory and can be interpreted as follows. Let us consider a crystal with the undistorted
electron-density functionρ0(R) =

∑
FG exp[iG ·R]. The acoustic displacementsu distort

the functionρ0(R) and they are equivalent to the changes in the phasesϕG of the complex
amplitudesFG given by1ϕG = u ·G. The approach used by Bruce and Cowley [14]
introduces into the energy expression, instead of the acoustic displacements, the real and
the imaginary componentsδF ′G and δF ′′G of the fluctuations of the complex amplitudeFG
(similar to δη1 and δη2 in equation (A3)). However, these variables are never used as
the normal coordinates for description of the acoustic phonons (see also the procedure for
the introduction of the variables in Landau theory) and such an approach does not give a
gapless dispersion law for the acoustic phonons. To demonstrate the latter, it is sufficient
to consider a simple case, i.e., a crystal with the electron-density functionρ0(R) having
only one non-zero amplitudeFG, and to expand its energy (like in equations (A2), (A3)) in
terms ofδF ′G andδF ′′G for a fixed value of the modulus|FG| = constant.

To calculate the statistical sum or statistical averages in terms of the variablesξ‖ andξ⊥,
the Jacobian of the transformation from the normal coordinatesδη0 andϕ to ξ‖ andξ⊥ should
be included under the statistical integral. The averaging procedures in the paper by Axe [2]
are carried out directly, without calculation of the Jacobian, but the non-linear dependence
of the coordinatesξ‖ and ξ⊥ on the normal coordinateϕ would have a significant impact
on such calculations. In particular, the statistical averaging of the exponent in equation (5)
(and in the calculations by Axe [2]) is subject to the validity of Wick’s theorem [6], which
should not hold (in general) for the variables used by Axe. The latter should be considered
as the main reason for the discrepancy between the result obtained by Overhauser and that
obtained by Axe.

Appendix B

The necessity for the introduction of the phase correlation in the calculations can be
demonstrated as follows. The fluctuations of the phase (without taking into account the
phase correlation) were calculated by Golovko and Levanyuk [5] and they have the form

〈|ϕq |2〉 = Ti

VDη2
0q

2
(B1)

in our notation. One can calculate the statistical mean value of

〈(∇ϕ(R))2〉 = V

(2π)3

∫
dq q2〈|ϕq |2〉 ∼ Tiq

3
0

Dη2
0

(B2)

and see that it increases very strongly on approaching the phase transition. However, as
was already mentioned (see also below), the value of〈(∇ϕ(R))2〉 in the direction of the IC
vector cannot be very large and this restriction should be invoked in the calculation of the
statistical averages. In other words, the calculation of the statistical averages of〈|ϕq |2〉 by
Golovko and Levanyuk [5] is valid only if the condition〈(∇kϕ(R))

2〉 < b holds, i.e., far
from the displacive-type transition temperature.

A similar situation never arises for conventional (not IC) phase transitions, since for the
order parameterη the condition of smallness of〈(∇η(R))2〉 always holds; that is,

〈(∇η(R))2〉 = Ti

(2π)3

∫
dq q2 1

α + gq2
∼ Tiq

3
0

g
(B3)

can be estimated asTi/Tat , which is always smaller than 10−2, and the corresponding
contribution (correction) to the potential is negligibly small, in contrast with that of the
mean square〈(∇ϕ(R))2〉.
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To show that〈(∇ϕ(R))2〉 cannot be very large in the direction of the IC vector (although
this is not the case for other directions), we consider first a one-dimensional linear chain ofN

atoms in thex-direction, with the IC modulated displacementsu(R) = u0 cos(kx+ϕ1). It is
obvious that for two neighbouring atoms in the positionsxi andxi+1 with the phasesϕ1(xi)

andϕ1(xi+1), changes inϕ1(xi+1)−ϕ1(xi) by 2π, 4π, . . . do not change the state. So, for the
calculation of the statistical sum for the linear atomic IC chain, to avoid multiple counting
of the same states, one should introduce the restriction|∂ϕ/∂x| < b in the calculation
procedure.

In the case of two parallel linear chains, modulated asu(R) = u0 cos(kx + ϕ1) and
u(R) = u0 cos(kx + ϕ2) respectively, the restriction of the smallness of the fluctuation,
|∂ϕ/∂x| < b, remains valid, but there should be no restriction on the difference
ϕ1(xi)− ϕ2(xi) between the phases of two parallel chains. For example, in the case where
ϕ1(x) = 0 andϕ2(x) = ax (a is some coefficient), the differenceϕ2(xi)−ϕ1(xi) = axi can
be very large for largexi .

Since a crystal is composed ofN × N linear atomic chains, it is now obvious that the
restriction should be introduced only for the fluctuations〈(∇ϕ(R))2〉 along the direction of
the IC vector, as was done in the calculations leading to equation (4).
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